Slide 5 ~ The A Value, part $1 \sim y = ax^2$

- a. What does the a value do the blue graph?
- b. When a is greater than 1, what does it do to the blue graph? _____
- c. When a is between 0 and 1, what does it do to the blue graph?
- d. If there is only an a value, what will the vertex always be?

Slide 6 ~ The A Value, part 2 ~ $y = ax^2$

- a. What does the a value do the blue graph?
- b. When a is less than 1, what does it do to the blue graph?

Practice: Describe the transformations from the given function to the transformed function.

a.
$$f(x) = x^2 \rightarrow f(x) = 4x^2$$

b.
$$y = x^2 \rightarrow y = \frac{1}{4}x^2$$

c.
$$f(x) \rightarrow 6 f(x)$$

d.
$$f(x) = x^2 \rightarrow f(x) = -x^2$$

f.
$$y = x^2 \rightarrow y = -\frac{1}{2}x^2$$

g.
$$f(x) \rightarrow -4f(x)$$

Putting It All Together with A, H, and K

Practice: Given the equations below, name the vertex and describe the transformations:

Equation	Transformations	Vertex
1. $y = -(x - 4)^2 + 7$		
2. $y = -2(x + 2)^2 + 5$		8
3. $y = \frac{1}{2}(x-3)^2 - 8$		

Practice: Create an equation to represents the following transformations:

- a. Shifted down 4 units, right 1 unit, and reflected across the x-axis
- b. Shifted up 6 units, reflected across the x-axis, and stretch by a factor of 3
- c. Shifted up 2 units, left 4 units, reflected across the x-axis, and shrunk by a factor of 3/4.